首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Eigenvector Computation and Community Detection in Asynchronous Gossip Models
  • 作者:Frederik Mallmann-Trenn ; Cameron Musco ; Christopher Musco
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:107
  • 页码:159:1-159:14
  • DOI:10.4230/LIPIcs.ICALP.2018.159
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We give a simple distributed algorithm for computing adjacency matrix eigenvectors for the communication graph in an asynchronous gossip model. We show how to use this algorithm to give state-of-the-art asynchronous community detection algorithms when the communication graph is drawn from the well-studied stochastic block model. Our methods also apply to a natural alternative model of randomized communication, where nodes within a community communicate more frequently than nodes in different communities. Our analysis simplifies and generalizes prior work by forging a connection between asynchronous eigenvector computation and Oja's algorithm for streaming principal component analysis. We hope that our work serves as a starting point for building further connections between the analysis of stochastic iterative methods, like Oja's algorithm, and work on asynchronous and gossip-type algorithms for distributed computation.
  • 关键词:block model; community detection; distributed clustering; eigenvector computation; gossip algorithms; population protocols
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有