首页    期刊浏览 2024年09月12日 星期四
登录注册

文章基本信息

  • 标题:Engineering Motif Search for Large Motifs
  • 作者:Petteri Kaski ; Juho Lauri ; Suhas Thejaswi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:103
  • 页码:28:1-28:19
  • DOI:10.4230/LIPIcs.SEA.2018.28
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a vertex-colored graph H and a multiset M of colors as input, the graph motif problem asks us to decide whether H has a connected induced subgraph whose multiset of colors agrees with M. The graph motif problem is NP-complete but known to admit randomized algorithms based on constrained multilinear sieving over GF(2^b) that run in time O(2^kk^2m {M({2^b})}) and with a false-negative probability of at most k/2^{b-1} for a connected m-edge input and a motif of size k. On modern CPU microarchitectures such algorithms have practical edge-linear scalability to inputs with billions of edges for small motif sizes, as demonstrated by Björklund, Kaski, Kowalik, and Lauri [ALENEX'15]. This scalability to large graphs prompts the dual question whether it is possible to scale to large motif sizes. We present a vertex-localized variant of the constrained multilinear sieve that enables us to obtain, in time O(2^kk^2m{M({2^b})}) and for every vertex simultaneously, whether the vertex participates in at least one match with the motif, with a per-vertex probability of at most k/2^{b-1} for a false negative. Furthermore, the algorithm is easily vector-parallelizable for up to 2^k threads, and parallelizable for up to 2^kn threads, where n is the number of vertices in H. Here {M({2^b})} is the time complexity to multiply in GF(2^b). We demonstrate with an open-source implementation that our variant of constrained multilinear sieving can be engineered for vector-parallel microarchitectures to yield hardware utilization that is bound by the available memory bandwidth. Our main engineering contributions are (a) a version of the recurrence for tightly labeled arborescences that can be executed as a sequence of memory-and-arithmetic coalescent parallel workloads on multiple GPUs, and (b) a bit-sliced low-level implementation for arithmetic in characteristic 2 to support (a).
  • 关键词:algorithm engineering; constrained multilinear sieving; graph motif problem; multi-GPU; vector-parallel; vertex-localization
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有