首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Hardness Amplification for Non-Commutative Arithmetic Circuits
  • 作者:Marco L. Carmosino ; Russell Impagliazzo ; Shachar Lovett
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:102
  • 页码:12:1-12:16
  • DOI:10.4230/LIPIcs.CCC.2018.12
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We show that proving mildly super-linear lower bounds on non-commutative arithmetic circuits implies exponential lower bounds on non-commutative circuits. That is, non-commutative circuit complexity is a threshold phenomenon: an apparently weak lower bound actually suffices to show the strongest lower bounds we could desire. This is part of a recent line of inquiry into why arithmetic circuit complexity, despite being a heavily restricted version of Boolean complexity, still cannot prove super-linear lower bounds on general devices. One can view our work as positive news (it suffices to prove weak lower bounds to get strong ones) or negative news (it is as hard to prove weak lower bounds as it is to prove strong ones). We leave it to the reader to determine their own level of optimism.
  • 关键词:arithmetic circuits; hardness amplification; circuit lower bounds; non-commutative computation
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有