首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Economical Delone Sets for Approximating Convex Bodies
  • 作者:Ahmed Abdelkader ; David M. Mount
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:101
  • 页码:4:1-4:12
  • DOI:10.4230/LIPIcs.SWAT.2018.4
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Convex bodies are ubiquitous in computational geometry and optimization theory. The high combinatorial complexity of multidimensional convex polytopes has motivated the development of algorithms and data structures for approximate representations. This paper demonstrates an intriguing connection between convex approximation and the classical concept of Delone sets from the theory of metric spaces. It shows that with the help of a classical structure from convexity theory, called a Macbeath region, it is possible to construct an epsilon-approximation of any convex body as the union of O(1/epsilon^{(d-1)/2}) ellipsoids, where the center points of these ellipsoids form a Delone set in the Hilbert metric associated with the convex body. Furthermore, a hierarchy of such approximations yields a data structure that answers epsilon-approximate polytope membership queries in O(log (1/epsilon)) time. This matches the best asymptotic results for this problem, by a data structure that both is simpler and arguably more elegant.
  • 关键词:Approximate polytope membership; Macbeath regions; Delone sets; Hilbert geometry
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有