首页    期刊浏览 2025年05月26日 星期一
登录注册

文章基本信息

  • 标题:Computational Complexity of the Interleaving Distance
  • 作者:Håvard Bakke Bjerkevik ; Magnus Bakke Botnan
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:99
  • 页码:13:1-13:15
  • DOI:10.4230/LIPIcs.SoCG.2018.13
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The interleaving distance is arguably the most prominent distance measure in topological data analysis. In this paper, we provide bounds on the computational complexity of determining the interleaving distance in several settings. We show that the interleaving distance is NP-hard to compute for persistence modules valued in the category of vector spaces. In the specific setting of multidimensional persistent homology we show that the problem is at least as hard as a matrix invertibility problem. Furthermore, this allows us to conclude that the interleaving distance of interval decomposable modules depends on the characteristic of the field. Persistence modules valued in the category of sets are also studied. As a corollary, we obtain that the isomorphism problem for Reeb graphs is graph isomorphism complete.
  • 关键词:Persistent Homology; Interleavings; NP-hard
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有