首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Dynamic Planar Orthogonal Point Location in Sublogarithmic Time
  • 作者:Timothy M. Chan ; Konstantinos Tsakalidis
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:99
  • 页码:25:1-25:15
  • DOI:10.4230/LIPIcs.SoCG.2018.25
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study a longstanding problem in computational geometry: dynamic 2-d orthogonal point location, i.e., vertical ray shooting among n horizontal line segments. We present a data structure achieving O(log n / log log n) optimal expected query time and O(log^{1/2+epsilon} n) update time (amortized) in the word-RAM model for any constant epsilon>0, under the assumption that the x-coordinates are integers bounded polynomially in n. This substantially improves previous results of Giyora and Kaplan [SODA 2007] and Blelloch [SODA 2008] with O(log n) query and update time, and of Nekrich (2010) with O(log n / log log n) query time and O(log^{1+epsilon} n) update time. Our result matches the best known upper bound for simpler problems such as dynamic 2-d dominance range searching. We also obtain similar bounds for orthogonal line segment intersection reporting queries, vertical ray stabbing, and vertical stabbing-max, improving previous bounds, respectively, of Blelloch [SODA 2008] and Mortensen [SODA 2003], of Tao (2014), and of Agarwal, Arge, and Yi [SODA 2005] and Nekrich [ISAAC 2011].
  • 关键词:dynamic data structures; point location; word RAM
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有