首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:On the Complexity of Closest Pair via Polar-Pair of Point-Sets
  • 作者:Roee David ; Karthik C. S. ; Bundit Laekhanukit
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:99
  • 页码:28:1-28:15
  • DOI:10.4230/LIPIcs.SoCG.2018.28
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Every graph G can be represented by a collection of equi-radii spheres in a d-dimensional metric Delta such that there is an edge uv in G if and only if the spheres corresponding to u and v intersect. The smallest integer d such that G can be represented by a collection of spheres (all of the same radius) in Delta is called the sphericity of G, and if the collection of spheres are non-overlapping, then the value d is called the contact-dimension of G. In this paper, we study the sphericity and contact dimension of the complete bipartite graph K_{n,n} in various L^p-metrics and consequently connect the complexity of the monochromatic closest pair and bichromatic closest pair problems.
  • 关键词:Contact dimension; Sphericity; Closest Pair; Fine-Grained Complexity
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有