首页    期刊浏览 2025年05月28日 星期三
登录注册

文章基本信息

  • 标题:The Multi-cover Persistence of Euclidean Balls
  • 作者:Herbert Edelsbrunner ; Georg Osang
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:99
  • 页码:34:1-34:14
  • DOI:10.4230/LIPIcs.SoCG.2018.34
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a locally finite X subseteq R^d and a radius r >= 0, the k-fold cover of X and r consists of all points in R^d that have k or more points of X within distance r. We consider two filtrations - one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k - and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in R^{d+1} whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module from Delaunay mosaics that is isomorphic to the persistence module of the multi-covers.
  • 关键词:Delaunay mosaics; hyperplane arrangements; discrete Morse theory; zigzag modules; persistent homology
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有