首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Optimal Morphs of Planar Orthogonal Drawings
  • 作者:Arthur van Goethem ; Kevin Verbeek
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:99
  • 页码:42:1-42:14
  • DOI:10.4230/LIPIcs.SoCG.2018.42
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We describe an algorithm that morphs between two planar orthogonal drawings Gamma_I and Gamma_O of a connected graph G, while preserving planarity and orthogonality. Necessarily Gamma_I and Gamma_O share the same combinatorial embedding. Our morph uses a linear number of linear morphs (linear interpolations between two drawings) and preserves linear complexity throughout the process, thereby answering an open question from Biedl et al. [Biedl et al., 2013]. Our algorithm first unifies the two drawings to ensure an equal number of (virtual) bends on each edge. We then interpret bends as vertices which form obstacles for so-called wires: horizontal and vertical lines separating the vertices of Gamma_O. We can find corresponding wires in Gamma_I that share topological properties with the wires in Gamma_O. The structural difference between the two drawings can be captured by the spirality of the wires in Gamma_I, which guides our morph from Gamma_I to Gamma_O.
  • 关键词:Homotopy; Morphing; Orthogonal drawing; Spirality
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有