首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:On Optimal Polyline Simplification Using the Hausdorff and Fréchet Distance
  • 作者:Marc van Kreveld ; Maarten L{\"o}ffler ; Lionov Wiratma
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:99
  • 页码:56:1-56:14
  • DOI:10.4230/LIPIcs.SoCG.2018.56
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We revisit the classical polygonal line simplification problem and study it using the Hausdorff distance and Fréchet distance. Interestingly, no previous authors studied line simplification under these measures in its pure form, namely: for a given epsilon>0, choose a minimum size subsequence of the vertices of the input such that the Hausdorff or Fréchet distance between the input and output polylines is at most epsilon. We analyze how the well-known Douglas-Peucker and Imai-Iri simplification algorithms perform compared to the optimum possible, also in the situation where the algorithms are given a considerably larger error threshold than epsilon. Furthermore, we show that computing an optimal simplification using the undirected Hausdorff distance is NP-hard. The same holds when using the directed Hausdorff distance from the input to the output polyline, whereas the reverse can be computed in polynomial time. Finally, to compute the optimal simplification from a polygonal line consisting of n vertices under the Fréchet distance, we give an O(kn^5) time algorithm that requires O(kn^2) space, where k is the output complexity of the simplification.
  • 关键词:polygonal line simplification; Hausdorff distance; Fr{\'e
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有