首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Crossing Lemma for Multigraphs
  • 作者:J{\'a}nos Pach ; G{\'e}za T{\'o}th
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:99
  • 页码:65:1-65:13
  • DOI:10.4230/LIPIcs.SoCG.2018.65
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let G be a drawing of a graph with n vertices and e>4n edges, in which no two adjacent edges cross and any pair of independent edges cross at most once. According to the celebrated Crossing Lemma of Ajtai, Chvátal, Newborn, Szemerédi and Leighton, the number of crossings in G is at least c{e^3 over n^2}, for a suitable constant c>0. In a seminal paper, Székely generalized this result to multigraphs, establishing the lower bound c{e^3 over mn^2}, where m denotes the maximum multiplicity of an edge in G. We get rid of the dependence on m by showing that, as in the original Crossing Lemma, the number of crossings is at least c'{e^3 over n^2} for some c'>0, provided that the "lens" enclosed by every pair of parallel edges in G contains at least one vertex. This settles a conjecture of Bekos, Kaufmann, and Raftopoulou.
  • 关键词:crossing number; Crossing Lemma; multigraph; separator theorem
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有