首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Near-Optimal Coresets of Kernel Density Estimates
  • 作者:Jeff M. Phillips ; Wai Ming Tai
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:99
  • 页码:66:1-66:13
  • DOI:10.4230/LIPIcs.SoCG.2018.66
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We construct near-optimal coresets for kernel density estimate for points in R^d when the kernel is positive definite. Specifically we show a polynomial time construction for a coreset of size O(sqrt{d log (1/epsilon)}/epsilon), and we show a near-matching lower bound of size Omega(sqrt{d}/epsilon). The upper bound is a polynomial in 1/epsilon improvement when d in [3,1/epsilon^2) (for all kernels except the Gaussian kernel which had a previous upper bound of O((1/epsilon) log^d (1/epsilon))) and the lower bound is the first known lower bound to depend on d for this problem. Moreover, the upper bound restriction that the kernel is positive definite is significant in that it applies to a wide-variety of kernels, specifically those most important for machine learning. This includes kernels for information distances and the sinc kernel which can be negative.
  • 关键词:Coresets; Kernel Density Estimate; Discrepancy
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有