摘要:Selfish Network Creation focuses on modeling real world networks from a game-theoretic point of view. One of the classic models by Fabrikant et al.[PODC'03] is the network creation game, where agents correspond to nodes in a network which buy incident edges for the price of alpha per edge to minimize their total distance to all other nodes. The model is well-studied but still has intriguing open problems. The most famous conjectures state that the price of anarchy is constant for all alpha and that for alpha >= n all equilibrium networks are trees. We introduce a novel technique for analyzing stable networks for high edge-price alpha and employ it to improve on the best known bounds for both conjectures. In particular we show that for alpha > 4n-13 all equilibrium networks must be trees, which implies a constant price of anarchy for this range of alpha. Moreover, we also improve the constant upper bound on the price of anarchy for equilibrium trees.
关键词:Algorithmic Game Theory; Network Creation Game; Price of Anarchy; Quality of Nash Equilibria