首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:On Approximating the Stationary Distribution of Time-reversible Markov Chains
  • 作者:Marco Bressan ; Enoch Peserico ; Luca Pretto
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:96
  • 页码:18:1-18:14
  • DOI:10.4230/LIPIcs.STACS.2018.18
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Approximating the stationary probability of a state in a Markov chain through Markov chain Monte Carlo techniques is, in general, inefficient. Standard random walk approaches require tilde{O}(tau/pi(v)) operations to approximate the probability pi(v) of a state v in a chain with mixing time tau, and even the best available techniques still have complexity tilde{O}(tau^1.5 / pi(v)^0.5); and since these complexities depend inversely on pi(v), they can grow beyond any bound in the size of the chain or in its mixing time. In this paper we show that, for time-reversible Markov chains, there exists a simple randomized approximation algorithm that breaks this "small-pi(v) barrier".
  • 关键词:Markov chains; MCMC sampling; large graph algorithms; randomized algorithms; sublinear algorithms
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有