首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Solving the Rubik's Cube Optimally is NP-complete
  • 作者:Erik D. Demaine ; Sarah Eisenstat ; Mikhail Rudoy
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:96
  • 页码:24:1-24:13
  • DOI:10.4230/LIPIcs.STACS.2018.24
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we prove that optimally solving an n x n x n Rubik's Cube is NP-complete by reducing from the Hamiltonian Cycle problem in square grid graphs. This improves the previous result that optimally solving an n x n x n Rubik's Cube with missing stickers is NP-complete. We prove this result first for the simpler case of the Rubik's Square--an n x n x 1 generalization of the Rubik's Cube--and then proceed with a similar but more complicated proof for the Rubik's Cube case. Our results hold both when the goal is make the sides monochromatic and when the goal is to put each sticker into a specific location.
  • 关键词:combinatorial puzzles; NP-hardness; group theory; Hamiltonicity
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有