首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Improving the Upper Bound on the Length of the Shortest Reset Word
  • 作者:Marek Szykula
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:96
  • 页码:56:1-56:13
  • DOI:10.4230/LIPIcs.STACS.2018.56
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We improve the best known upper bound on the length of the shortest reset words of synchronizing automata. The new bound is slightly better than 114 n^3 / 685 + O(n^2). The Cerny conjecture states that (n-1)^2 is an upper bound. So far, the best general upper bound was (n^3-n)/6-1 obtained by J.-E. Pin and P. Frankl in 1982. Despite a number of efforts, it remained unchanged for about 35 years. To obtain the new upper bound we utilize avoiding words. A word is avoiding for a state q if after reading the word the automaton cannot be in q. We obtain upper bounds on the length of the shortest avoiding words, and using the approach of Trahtman from 2011 combined with the well-known Frankl theorem from 1982, we improve the general upper bound on the length of the shortest reset words. For all the bounds, there exist polynomial algorithms finding a word of length not exceeding the bound.
  • 关键词:avoiding word; Cerny conjecture; reset length; reset threshold; reset word; synchronizing automaton; synchronizing word
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有