首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Non-Negative Sparse Regression and Column Subset Selection with L1 Error
  • 作者:Aditya Bhaskara ; Silvio Lattanzi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:94
  • 页码:7:1-7:15
  • DOI:10.4230/LIPIcs.ITCS.2018.7
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the problems of sparse regression and column subset selection under L1 error. For both problems, we show that in the non-negative setting it is possible to obtain tight and efficient approximations, without any additional structural assumptions (such as restricted isometry, incoherence, expansion, etc.). For sparse regression, given a matrix A and a vector b with non-negative entries, we give an efficient algorithm to output a vector x of sparsity O(k), for which |Ax - b|_1 is comparable to the smallest error possible using non-negative k-sparse x. We then use this technique to obtain our main result: an efficient algorithm for column subset selection under L1 error for non-negative matrices.
  • 关键词:Sparse regression; L1 error optimization; Column subset selection
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有