首页    期刊浏览 2025年05月24日 星期六
登录注册

文章基本信息

  • 标题:Finite Sample Differentially Private Confidence Intervals
  • 作者:Vishesh Karwa ; Salil Vadhan
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:94
  • 页码:44:1-44:9
  • DOI:10.4230/LIPIcs.ITCS.2018.44
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the problem of estimating finite sample confidence intervals of the mean of a normal population under the constraint of differential privacy. We consider both the known and unknown variance cases and construct differentially private algorithms to estimate confidence intervals. Crucially, our algorithms guarantee a finite sample coverage, as opposed to an asymptotic coverage. Unlike most previous differentially private algorithms, we do not require the domain of the samples to be bounded. We also prove lower bounds on the expected size of any differentially private confidence set showing that our the parameters are optimal up to polylogarithmic factors.
  • 关键词:Differential Privacy; Confidence Intervals; Lower bounds; Finite Sample
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有