首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Markov Chain Theory Approach to Characterizing the Minimax Optimality of Stochastic Gradient Descent (for Least Squares)
  • 作者:Prateek Jain ; Sham M. Kakade ; Rahul Kidambi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:93
  • 页码:2:1-2:10
  • DOI:10.4230/LIPIcs.FSTTCS.2017.2
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:This work provides a simplified proof of the statistical minimax optimality of (iterate averaged) stochastic gradient descent (SGD), for the special case of least squares. This result is obtained by analyzing SGD as a stochastic process and by sharply characterizing the stationary covariance matrix of this process. The finite rate optimality characterization captures the constant factors and addresses model mis-specification.
  • 关键词:Stochastic Gradient Descent; Minimax Optimality; Least Squares Regression
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有