首页    期刊浏览 2025年08月21日 星期四
登录注册

文章基本信息

  • 标题:Matrix Estimation, Latent Variable Model and Collaborative Filtering
  • 作者:Devavrat Shah
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:93
  • 页码:4:1-4:8
  • DOI:10.4230/LIPIcs.FSTTCS.2017.4
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Estimating a matrix based on partial, noisy observations is prevalent in variety of modern applications with recommendation system being a prototypical example. The non-parametric latent variable model provides canonical representation for such matrix data when the underlying distribution satisfies ``exchangeability'' with graphons and stochastic block model being recent examples of interest. Collaborative filtering has been a successfully utilized heuristic in practice since the dawn of e-commerce. In this extended abstract, we will argue that collaborative filtering (and its variants) solve matrix estimation for a generic latent variable model with near optimal sample complexity.
  • 关键词:Matrix Estimation; Graphon Estimation; Collaborative Filtering
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有