首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Lifting Theorem with Applications to Symmetric Functions
  • 作者:Arkadev Chattopadhyay ; Nikhil S. Mande
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:93
  • 页码:23:1-23:14
  • DOI:10.4230/LIPIcs.FSTTCS.2017.23
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We use a technique of "lifting" functions introduced by Krause and Pudlak [Theor. Comput. Sci., 1997], to amplify degree-hardness measures of a function to corresponding monomial-hardness properties of the lifted function. We then show that any symmetric function F projects onto a "lift" of another suitable symmetric function f . These two key results enable us to prove several results on the complexity of symmetric functions in various models, as given below: 1. We provide a characterization of the approximate spectral norm of symmetric functions in terms of the spectrum of the underlying predicate, affirming a conjecture of Ada et al. [APPROX-RANDOM, 2012] which has several consequences. 2. We characterize symmetric functions computable by quasi-polynomial sized Threshold of Parity circuits. 3. We show that the approximate spectral norm of a symmetric function f characterizes the (quantum and classical) bounded error communication complexity of f o XOR. 4. Finally, we characterize the weakly-unbounded error communication complexity of symmetric XOR functions, resolving a weak form of a conjecture by Shi and Zhang [Quantum Information & Computation, 2009]
  • 关键词:Symmetric functions; lifting; circuit complexity; communication com- plexity
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有