首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Understanding the Correlation Gap For Matchings
  • 作者:Guru Guruganesh ; Euiwoong Lee
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:93
  • 页码:32:1-32:15
  • DOI:10.4230/LIPIcs.FSTTCS.2017.32
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a set of vertices V with |V| = n, a weight vector w in (R^+ \cup {0})^{\binom{V}{2}}, and a probability vector x In [0, 1]^{\binom{V}{2}} in the matching polytope, we study the quantity (\E_{G}[ \nu_w(G)])/(sum_(u, v) in \binom{V}{2} w_{u, v} x_{u, v}) where G is a random graph where each edge e with weight w_e appears with probability x_e independently, and let \nu_w(G) denotes the weight of the maximum matching of G. This quantity is closely related to correlation gap and contention resolution schemes, which are important tools in the design of approximation algorithms, algorithmic game theory, and stochastic optimization. We provide lower bounds for the above quantity for general and bipartite graphs, and for weighted and unweighted settings. The best known upper bound is 0.54 by Karp and Sipser, and the best lower bound is 0.4. We show that it is at least 0.47 for unweighted bipartite graphs, at least 0.45 for weighted bipartite graphs, and at least 0.43 for weighted general graphs. To achieve our results, we construct local distribution schemes on the dual which may be of independent interest.
  • 关键词:Mathings; Randomized Algorithms; Correlation Gap
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有