首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:On the Parameterized Complexity of Red-Blue Points Separation
  • 作者:E}douard Bonnet ; Panos Giannopoulos ; Michael Lampis
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:89
  • 页码:8:1-8:13
  • DOI:10.4230/LIPIcs.IPEC.2017.8
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the following geometric separation problem: Given a set R of red points and a set B of blue points in the plane, find a minimum-size set of lines that separate R from B. We show that, in its full generality, parameterized by the number of lines k in the solution, the problem is unlikely to be solvable significantly faster than the brute-force n^{O(k)}-time algorithm, where n is the total number of points. Indeed, we show that an algorithm running in time f(k)n^{o(k/log k)}, for any computable function f, would disprove ETH. Our reduction crucially relies on selecting lines from a set with a large number of different slopes (i.e., this number is not a function of k). Conjecturing that the problem variant where the lines are required to be axis-parallel is FPT in the number of lines, we show the following preliminary result. Separating R from B with a minimum-size set of axis-parallel lines is FPT in the size of either set, and can be solved in time O^*(9^{|B|}) (assuming that B is the smallest set).
  • 关键词:red-blue points separation; geometric problem; W[1]-hardness; FPT algorithm; ETH-based lower bound
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有