首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Turing Kernelization for Finding Long Paths in Graphs Excluding a Topological Minor
  • 作者:Bart M. P. Jansen ; Marcin Pilipczuk ; Marcin Wrochna
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:89
  • 页码:23:1-23:13
  • DOI:10.4230/LIPIcs.IPEC.2017.23
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The notion of Turing kernelization investigates whether a polynomial-time algorithm can solve an NP-hard problem, when it is aided by an oracle that can be queried for the answers to bounded-size subproblems. One of the main open problems in this direction is whether k-PATH admits a polynomial Turing kernel: can a polynomial-time algorithm determine whether an undirected graph has a simple path of length k, using an oracle that answers queries of size k^{O(1)}? We show this can be done when the input graph avoids a fixed graph H as a topological minor, thereby significantly generalizing an earlier result for bounded-degree and K_{3,t}-minor-free graphs. Moreover, we show that k-PATH even admits a polynomial Turing kernel when the input graph is not H-topological-minor-free itself, but contains a known vertex modulator of size bounded polynomially in the parameter, whose deletion makes it so. To obtain our results, we build on the graph minors decomposition to show that any H-topological-minor-free graph that does not contain a k-path has a separation that can safely be reduced after communication with the oracle.
  • 关键词:Turing kernel; long path; k-path; excluded topological minor; modulator
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有