首页    期刊浏览 2025年09月20日 星期六
登录注册

文章基本信息

  • 标题:An Exponential Lower Bound for Cut Sparsifiers in Planar Graphs
  • 作者:Nikolai Karpov ; Marcin Pilipczuk ; Anna Zych-Pawlewicz
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:89
  • 页码:24:1-24:11
  • DOI:10.4230/LIPIcs.IPEC.2017.24
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given an edge-weighted graph G with a set Q of k terminals, a mimicking network is a graph with the same set of terminals that exactly preserves the sizes of minimum cuts between any partition of the terminals. A natural question in the area of graph compression is to provide as small mimicking networks as possible for input graph G being either an arbitrary graph or coming from a specific graph class. In this note we show an exponential lower bound for cut mimicking networks in planar graphs: there are edge-weighted planar graphs with k terminals that require 2^(k-2) edges in any mimicking network. This nearly matches an upper bound of O(k * 2^(2k)) of Krauthgamer and Rika [SODA 2013, arXiv:1702.05951] and is in sharp contrast with the O(k^2) upper bound under the assumption that all terminals lie on a single face [Goranci, Henzinger, Peng, arXiv:1702.01136]. As a side result we show a hard instance for the double-exponential upper bounds given by Hagerup, Katajainen, Nishimura, and Ragde [JCSS 1998], Khan and Raghavendra [IPL 2014], and Chambers and Eppstein [JGAA 2013].
  • 关键词:mimicking networks; planar graphs
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有