首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Provably Secure Key Establishment Against Quantum Adversaries
  • 作者:Aleksandrs Belovs ; Gilles Brassard ; Peter H\oyer
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:73
  • 页码:3:1-3:17
  • DOI:10.4230/LIPIcs.TQC.2017.3
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:At Crypto 2011, some of us had proposed a family of cryptographic protocols for key establishment capable of protecting quantum and classical legitimate parties unconditionally against a quantum eavesdropper in the query complexity model. Unfortunately, our security proofs were unsatisfactory from a cryptographically meaningful perspective because they were sound only in a worst-case scenario. Here, we extend our results and prove that for any \eps > 0, there is a classical protocol that allows the legitimate parties to establish a common key after O(N) expected queries to a random oracle, yet any quantum eavesdropper will have a vanishing probability of learning their key after O(N^(1.5-\eps)) queries to the same oracle. The vanishing probability applies to a typical run of the protocol. If we allow the legitimate parties to use a quantum computer as well, their advantage over the quantum eavesdropper becomes arbitrarily close to the quadratic advantage that classical legitimate parties enjoyed over classical eavesdroppers in the seminal 1974 work of Ralph Merkle. Along the way, we develop new tools to give lower bounds on the number of quantum queries required to distinguish two probability distributions. This method in itself could have multiple applications in cryptography. We use it here to study average-case quantum query complexity, for which we develop a new composition theorem of independent interest.
  • 关键词:Merkle puzzles; Key establishment schemes; Quantum cryptography; Adversary method; Average-case analysis
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有