首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:LICIC: Less Important Components for Imbalanced Multiclass Classification
  • 作者:Vincenzo Dentamaro ; Donato Impedovo ; Giuseppe Pirlo
  • 期刊名称:Information
  • 电子版ISSN:2078-2489
  • 出版年度:2018
  • 卷号:9
  • 期号:12
  • 页码:317
  • DOI:10.3390/info9120317
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Multiclass classification in cancer diagnostics, using DNA or Gene Expression Signatures, but also classification of bacteria species fingerprints in MALDI-TOF mass spectrometry data, is challenging because of imbalanced data and the high number of dimensions with respect to the number of instances. In this study, a new oversampling technique called LICIC will be presented as a valuable instrument in countering both class imbalance, and the famous “curse of dimensionality” problem. The method enables preservation of non-linearities within the dataset, while creating new instances without adding noise. The method will be compared with other oversampling methods, such as Random Oversampling, SMOTE, Borderline-SMOTE, and ADASYN. F1 scores show the validity of this new technique when used with imbalanced, multiclass, and high-dimensional datasets.
  • 关键词:imbalanced learn; smote; SVM; KPCA; kernel; class imbalance imbalanced learn ; smote ; SVM ; KPCA ; kernel ; class imbalance
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有