首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Improved Particle Swarm Optimization Algorithm Based on Last-Eliminated Principle and Enhanced Information Sharing
  • 作者:Xueying Lv ; Yitian Wang ; Junyi Deng
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2018
  • 卷号:2018
  • DOI:10.1155/2018/5025672
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this study, an improved eliminate particle swarm optimization (IEPSO) is proposed on the basis of the last-eliminated principle to solve optimization problems in engineering design. During optimization, the IEPSO enhances information communication among populations and maintains population diversity to overcome the limitations of classical optimization algorithms in solving multiparameter, strong coupling, and nonlinear engineering optimization problems. These limitations include advanced convergence and the tendency to easily fall into local optimization. The parameters involved in the imported “local-global information sharing” term are analyzed, and the principle of parameter selection for performance is determined. The performances of the IEPSO and classical optimization algorithms are then tested by using multiple sets of classical functions to verify the global search performance of the IEPSO. The simulation test results and those of the improved classical optimization algorithms are compared and analyzed to verify the advanced performance of the IEPSO algorithm.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有