期刊名称:International Journal of Antennas and Propagation
印刷版ISSN:1687-5869
电子版ISSN:1687-5877
出版年度:2018
卷号:2018
DOI:10.1155/2018/3161928
出版社:Hindawi Publishing Corporation
摘要:Active electronically scanned array antenna (AESA antenna) is capable of controlling the radiation pattern by controlling the feeding phase of the radiating elements. It has good performance and plays an important role in radar systems. With the development of AESA antenna towards high-frequency bands and high-density arrays, the structural-electromagnetic-thermal (SET) coupling becomes increasingly significant. It seriously restricts the realization of high performances of AESA antennas. However, the previously reported theoretical multi-field-coupled model for the coupling problem ignores the effect of the deformations of the feed system and array elements on the electrical performance. It only considers the positional deviations of the array elements in the coupling field. As a result, the accuracy of the numerical solution by the theoretical model is reduced. To overcome the above problems, this paper first establishes the field-circuit coupling model by introducing the deformation errors of the feed system into the existing theoretical model. Secondly, this paper proposes a new numerical solution for the multi-field-coupled problem of AESA antennas based on model reconstruction. And the model reconstruction includes the following: the NURBS (nonuniform rational B-spline) surface fitting algorithm that completes the mapping from finite element models to geometric models by the surface equations established by the node information and the local model reconstruction algorithm that determines the local geometric models by the positions and the directions. The NURBS surface fitting algorithm guarantees the accuracy of both the positions and shapes of array elements. The local model reconstruction algorithm ensures the accuracy of the amplitudes and phases of feed connectors. Finally, the numerical solution was applied to the 32-element AESA antenna and the simulations are close to the measurements.