首页    期刊浏览 2024年11月05日 星期二
登录注册

文章基本信息

  • 标题:Intrinsic cellular chirality regulates left–right symmetry breaking during cardiac looping
  • 作者:Poulomi Ray ; Amanda S. Chin ; Kathryn E. Worley
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:50
  • 页码:E11568-E11577
  • DOI:10.1073/pnas.1808052115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The vertebrate body plan is overall symmetrical but left–right (LR) asymmetric in the shape and positioning of internal organs. Although several theories have been proposed, the biophysical mechanisms underlying LR asymmetry are still unclear, especially the role of cell chirality, the LR asymmetry at the cellular level, on organ asymmetry. Here with developing chicken embryos, we examine whether intrinsic cell chirality or handedness regulates cardiac C looping. Using a recently established biomaterial-based 3D culture platform, we demonstrate that chick cardiac cells before and during C looping are intrinsically chiral and exhibit dominant clockwise rotation in vitro. We further show that cells in the developing myocardium are chiral as evident by a rightward bias of cell alignment and a rightward polarization of the Golgi complex, correlating with the direction of cardiac tube rotation. In addition, there is an LR polarized distribution of N-cadherin and myosin II in the myocardium before the onset of cardiac looping. More interestingly, the reversal of cell chirality via activation of the protein kinase C signaling pathway reverses the directionality of cardiac looping, accompanied by a reversal in cellular biases on the cardiac tube. Our results suggest that myocardial cell chirality regulates cellular LR symmetry breaking in the heart tube and the resultant directionality of cardiac looping. Our study provides evidence of an intrinsic cellular chiral bias leading to LR symmetry breaking during directional tissue rotation in vertebrate development.
  • 关键词:cardiac looping ; cell chirality ; protein kinase C ; left–right asymmetry ; tissue morphogenesis
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有