首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Differential growth and shape formation in plant organs
  • 作者:Changjin Huang ; Zilu Wang ; David Quinn
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:49
  • 页码:12359-12364
  • DOI:10.1073/pnas.1811296115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Morphogenesis is a phenomenon by which a wide variety of functional organs are formed in biological systems. In plants, morphogenesis is primarily driven by differential growth of tissues. Much effort has been devoted to identifying the role of genetic and biomolecular pathways in regulating cell division and cell expansion and in influencing shape formation in plant organs. However, general principles dictating how differential growth controls the formation of complex 3D shapes in plant leaves and flower petals remain largely unknown. Through quantitative measurements on live plant organs and detailed finite-element simulations, we show how the morphology of a growing leaf is determined by both the maximum value and the spatial distribution of growth strain. With this understanding, we develop a broad scientific framework for a morphological phase diagram that is capable of rationalizing four configurations commonly found in plant organs: twisting, helical twisting, saddle bending, and edge waving. We demonstrate the robustness of these findings and analyses by recourse to synthetic reproduction of all four configurations using controlled polymerization of a hydrogel. Our study points to potential approaches to innovative geometrical design and actuation in such applications as building architecture, soft robotics and flexible electronics.
  • 关键词:morphogenesis ; growth ; soft matter ; 3D structure
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有