期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:47
页码:11911-11916
DOI:10.1073/pnas.1812770115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Protein assemblies consisting of structural maintenance of chromosomes (SMC) and kleisin subunits are essential for the process of chromosome segregation across all domains of life. Prokaryotic condensin belonging to this class of protein complexes is composed of a homodimer of SMC that associates with a kleisin protein subunit called ScpA. While limited structural data exist for the proteins that comprise the (SMC)–kleisin complex, the complete structure of the entire complex remains unknown. Using an integrative approach combining both crystallographic data and coevolutionary information, we predict an atomic-scale structure of the whole condensin complex, which our results indicate being composed of a single ring. Coupling coevolutionary information with molecular-dynamics simulations, we study the interaction surfaces between the subunits and examine the plausibility of alternative stoichiometries of the complex. Our analysis also reveals several additional configurational states of the condensin hinge domain and the SMC–kleisin interaction domains, which are likely involved with the functional opening and closing of the condensin ring. This study provides the foundation for future investigations of the structure–function relationship of the various SMC–kleisin protein complexes at atomic resolution.
关键词:bacterial condensin ; SMC–kleisin complexes ; coevolutionary information ; direct coupling analysis ; DNA translocation