首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Decomposition responses to climate depend on microbial community composition
  • 作者:Sydney I. Glassman ; Claudia Weihe ; Junhui Li
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:47
  • 页码:11994-11999
  • DOI:10.1073/pnas.1811269115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Bacteria and fungi drive decomposition, a fundamental process in the carbon cycle, yet the importance of microbial community composition for decomposition remains elusive. Here, we used an 18-month reciprocal transplant experiment along a climate gradient in Southern California to disentangle the effects of the microbial community versus the environment on decomposition. Specifically, we tested whether the decomposition response to climate change depends on the microbial community. We inoculated microbial decomposers from each site onto a common, irradiated leaf litter within “microbial cages” that prevent microbial exchange with the environment. We characterized fungal and bacterial composition and abundance over time and investigated the functional consequences through litter mass loss and chemistry. After 12 months, microbial communities altered both decomposition rate and litter chemistry. Further, the functional measurements depended on an interaction between the community and its climate in a manner not predicted by current theory. Moreover, microbial ecologists have traditionally considered fungi to be the primary agents of decomposition and for bacteria to play a minor role. Our results indicate that not only does climate change and transplantation have differential legacy effects among bacteria and fungi, but also that bacterial communities might be less functionally redundant than fungi with regards to decomposition. Thus, it may be time to reevaluate both the role of microbial community composition in its decomposition response to climate and the relative roles of bacterial and fungal communities in decomposition.
  • 关键词:leaf litter decomposition ; reciprocal transplant ; bacteria ; fungi ; elevation gradient
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有