期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:47
页码:12005-12010
DOI:10.1073/pnas.1810845115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:All living tetrapods have a one-to-two branching pattern in the embryonic proximal limb skeleton, with a single element at the base of the limb (the humerus or femur) that articulates distally with two parallel radials (the ulna and radius or the tibia and fibula). This pattern is also seen in the fossilized remains of stem-tetrapods, including the fishlike members of the group, in which despite the absence of digits, the proximal parts of the fin skeleton clearly resemble those of later tetrapods. However, little is known about the developmental mechanisms that establish and canalize this highly conserved pattern. We describe the well-preserved pelvic fin skeleton of Rhizodus hibberti , a Carboniferous sarcopterygian (lobe-finned) fish, and member of the tetrapod stem group. In this specimen, three parallel radials, each robust with a distinct morphology, articulate with the femur. We review this unexpected morphology in a phylogenetic and developmental context. It implies that the developmental patterning mechanisms seen in living tetrapods, now highly constrained, evolved from mechanisms flexible enough to accommodate variation in the zeugopod (even between pectoral and pelvic fins), while also allowing each element to have a unique morphology.