期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:46
页码:11772-11777
DOI:10.1073/pnas.1812064115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Fluctuation X-ray scattering (FXS) is an emerging experimental technique in which X-ray solution scattering data are collected from particles in solution using ultrashort X-ray exposures generated by a free-electron laser (FEL). FXS experiments overcome the low data-to-parameter ratios associated with traditional solution scattering measurements by providing several orders of magnitude more information in the final processed data. Here we demonstrate the practical feasibility of FEL-based FXS on a biological multiple-particle system and describe data-processing techniques required to extract robust FXS data and significantly reduce the required number of snapshots needed by introducing an iterative noise-filtering technique. We showcase a successful ab initio electron density reconstruction from such an experiment, studying the Paramecium bursaria Chlorella virus (PBCV-1).