首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Music Generation Based on Convolution-LSTM
  • 作者:Yongjie Huang ; Xiaofeng Huang ; Qiakai Cai
  • 期刊名称:Computer and Information Science
  • 印刷版ISSN:1913-8989
  • 电子版ISSN:1913-8997
  • 出版年度:2018
  • 卷号:11
  • 期号:3
  • 页码:50
  • DOI:10.5539/cis.v11n3p50
  • 出版社:Canadian Center of Science and Education
  • 摘要:

    In this paper, we propose a model that combines Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) for music generation. We first convert MIDI-format music file into a musical score matrix, and then establish convolution layers to extract feature of the musical score matrix. Finally, the output of the convolution layers is split in the direction of the time axis and input into the LSTM, so as to achieve the purpose of music generation. The result of the model was verified by comparison of accuracy, time-domain analysis, frequency-domain analysis and human-auditory evaluation. The results show that Convolution-LSTM performs better in music genertaion than LSTM, with more pronounced undulations and clearer melody.

Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有