摘要:The ability for DFT: B3LYP calculations using the 6-31g and lanl2dz basis sets to predict the electrochemical properties of twenty (20) 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives with varying degrees of cytotoxic activity in dimethylformamide (DMF) was investigated. There was a strong correlation for the first reduction and moderate-to-low correlation of the second reduction of the diazine ring between the computational and the experimental data, with the exception of the derivative containing the nitro functionality. The four (4) nitro group derivatives are clear outliers in the overall data sets and the derivative E4 is ill-behaved. The remaining three (3) derivatives containing the nitro groups had a strong correlation between the computational and experimental data; however, the computational data falls substantially outside of the expected range.
关键词:quinoxaline-di-N-oxide derivatives; voltammetry; anti-tumor; reduction potential; experimental; computational; ab initio; density functional theory quinoxaline-di-N-oxide derivatives ; voltammetry ; anti-tumor ; reduction potential ; experimental ; computational ; ab initio ; density functional theory