首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Improving the Classification Efficiency of an ANN Utilizing a New Training Methodology
  • 作者:Ioannis E. Livieris ; Ioannis E. Livieris
  • 期刊名称:Informatics
  • 电子版ISSN:2227-9709
  • 出版年度:2019
  • 卷号:6
  • 期号:1
  • 页码:1
  • DOI:10.3390/informatics6010001
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:In this work, a new approach for training artificial neural networks is presented which utilises techniques for solving the constraint optimisation problem. More specifically, this study converts the training of a neural network into a constraint optimisation problem. Furthermore, we propose a new neural network training algorithm based on the L-BFGS-B method. Our numerical experiments illustrate the classification efficiency of the proposed algorithm and of our proposed methodology, leading to more efficient, stable and robust predictive models.
  • 关键词:artificial neural networks; constrained optimisation; L-BFGS-B; accuracy artificial neural networks ; constrained optimisation ; L-BFGS-B ; accuracy
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有