首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A Comparison of Word Embeddings and N-gram Models for DBpedia Type and Invalid Entity Detection
  • 作者:Hanqing Zhou ; Hanqing Zhou ; Amal Zouaq
  • 期刊名称:Information
  • 电子版ISSN:2078-2489
  • 出版年度:2019
  • 卷号:10
  • 期号:1
  • 页码:6
  • DOI:10.3390/info10010006
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:This article presents and evaluates a method for the detection of DBpedia types and entities that can be used for knowledge base completion and maintenance. This method compares entity embeddings with traditional N-gram models coupled with clustering and classification. We tackle two challenges: (a) the detection of entity types, which can be used to detect invalid DBpedia types and assign DBpedia types for type-less entities; and (b) the detection of invalid entities in the resource description of a DBpedia entity. Our results show that entity embeddings outperform n-gram models for type and entity detection and can contribute to the improvement of DBpedia’s quality, maintenance, and evolution.
  • 关键词:semantic web; DBpedia; entity embedding; n-grams; type identification; entity identification; data mining; machine learning semantic web ; DBpedia ; entity embedding ; n-grams ; type identification ; entity identification ; data mining ; machine learning
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有