首页    期刊浏览 2024年11月09日 星期六
登录注册

文章基本信息

  • 标题:Heart Rate Acquisition and Threshold-Based Training Increases Oxygen Uptake at Metabolic Threshold in Triathletes: A Pilot Study
  • 作者:Neufeld, Eric V. ; Neufeld, Eric V. ; Wadowski, Jeremy
  • 期刊名称:International Journal of Exercise Science
  • 电子版ISSN:1939-795X
  • 出版年度:2019
  • 卷号:12
  • 期号:2
  • 页码:144-154
  • 出版社:Berkeley Electronic Press
  • 摘要:International Journal of Exercise Science 12(2): 144-154, 2019. Exercise intensity is a critical component of the exercise prescription model. However, current research employing various non-specific exercise intensity protocols have reported wide variability in maximum oxygen uptake (VO2max) improvement after training, suggesting a present lack of consensus regarding optimal heart rate (fC) training zones for maximal athletic performance. This study examined the relationship between percentage of time (%time) spent training between the metabolic (VO2θ) and ventilatory thresholds (VEθ), and the resultant change in markers of aerobic performance. Thirteen (6 males) collegiate club-level triathletes were recruited for eight weeks of remote fC monitoring during all running and cycling sessions. Participants donned a forearm-worn optical fC sensor paired to a smartphone that collected and stored fCs. Subjects were categorized into Low and High groups based on %time spent training between the VO2θ and VEθ. Significant increases were observed in relative VO2max (P = 0.007, g = 0.48), VO2θ (P = 0.018, g = 0.35), and VEθ (P = 0.030, g = 0.29) from baseline after eight weeks for both groups. A 95% bootstrapped confidence interval that did not include zero (-0.38, -0.03; g = 1.26) revealed a large and significantly greater change in VO2θ in the High group (0.37 ± 0.15 L/min) versus the Low group (0.17 ± 0.14 L/min). No significant differences were observed in other variables between groups. Increasing triathletes’ %time spent exercising between VO2θ and VEθ may optimize increases in VO2θ after eight weeks of training.
  • 关键词:maximal oxygen uptake; metabolic threshold; ventilatory threshold; exercise intensity; training zones; athletic performance
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有