期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:51
页码:12979-12984
DOI:10.1073/pnas.1809374115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Bacteria under external stress can reveal unexpected emergent phenotypes. We show that the intensely studied bacterium Escherichia coli can transform into long, highly motile helical filaments poized at a torsional buckling criticality when exposed to minimum inhibitory concentrations of several antibiotics. While the highly motile helices are physically either right- or left-handed, the motile helices always rotate with a right-handed angular velocity ω → , which points in the same direction as the translational velocity v → T of the helix. Furthermore, these helical cells do not swim by a “run and tumble” but rather synchronously flip their spin ω → and thus translational velocity—backing up rather than tumbling. By increasing the translational persistence length, these dynamics give rise to an effective diffusion coefficient up to 20 times that of a normal E. coli cell. Finally, we propose an evolutionary mechanism for this phenotype’s emergence whereby the increased effective diffusivity provides a fitness advantage in allowing filamentous cells to more readily escape regions of high external stress.