首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Toward understanding cancer stem cell heterogeneity in the tumor microenvironment
  • 作者:Federico Bocci ; Federico Bocci ; Larisa Gearhart-Serna
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2019
  • 卷号:116
  • 期号:1
  • 页码:148-157
  • DOI:10.1073/pnas.1815345116
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The epithelial–mesenchymal transition (EMT) and cancer stem cell (CSC) formation are two paramount processes driving tumor progression, therapy resistance, and cancer metastasis. Recent experiments show that cells with varying EMT and CSC phenotypes are spatially segregated in the primary tumor. The underlying mechanisms generating such spatiotemporal dynamics in the tumor microenvironment, however, remain largely unexplored. Here, we show through a mechanism-based dynamical model that the diffusion of EMT-inducing signals such as TGF-β, together with noncell autonomous control of EMT and CSC decision making via the Notch signaling pathway, can explain experimentally observed disparate localization of subsets of CSCs with varying EMT phenotypes in the tumor. Our simulations show that the more mesenchymal CSCs lie at the invasive edge, while the hybrid epithelial/mesenchymal (E/M) CSCs reside in the tumor interior. Further, motivated by the role of Notch-Jagged signaling in mediating EMT and stemness, we investigated the microenvironmental factors that promote Notch-Jagged signaling. We show that many inflammatory cytokines such as IL-6 that can promote Notch-Jagged signaling can ( i ) stabilize a hybrid E/M phenotype, ( ii ) increase the likelihood of spatial proximity of hybrid E/M cells, and ( iii ) expand the fraction of CSCs. To validate the predicted connection between Notch-Jagged signaling and stemness, we knocked down JAG1 in hybrid E/M SUM149 human breast cancer cells in vitro. JAG1 knockdown significantly restricted tumor organoid formation, confirming the key role that Notch-Jagged signaling can play in tumor progression. Together, our integrated computational–experimental framework reveals the underlying principles of spatiotemporal dynamics of EMT and CSCs.
  • 关键词:cancer stem cells ; epithelial–mesenchymal transition ; Notch signaling ; inflammation ; breast tumor organoids
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有