期刊名称:International Journal of Emerging Technologies in Learning (iJET)
印刷版ISSN:1863-0383
出版年度:2018
卷号:13
期号:11
页码:67-77
语种:English
出版社:Kassel University Press
摘要:To improve the school's teaching plan, optimize the online learning system, and help students achieve better learning outcomes, an educative data mining model for the supervision of the e-learning process was established. Statistical analysis and visualization in data mining techniques, association rule algorithms, and clustering algorithms were applied. The teaching data of a college English teaching management platform was systematically analyzed. A related conclusion was drawn on the relationship between students' English learning effects and online learning habits. The results showed that this method could effectively help teachers judge students' online learning results, understand their online learning status, and improve their online learning process. Therefore, the model can improve the effectiveness of students' online learning.