首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Scaling up analogical innovation with crowds and AI
  • 作者:Aniket Kittur ; Aniket Kittur ; Lixiu Yu
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2019
  • 卷号:116
  • 期号:6
  • 页码:1870-1877
  • DOI:10.1073/pnas.1807185116
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Analogy—the ability to find and apply deep structural patterns across domains—has been fundamental to human innovation in science and technology. Today there is a growing opportunity to accelerate innovation by moving analogy out of a single person’s mind and distributing it across many information processors, both human and machine. Doing so has the potential to overcome cognitive fixation, scale to large idea repositories, and support complex problems with multiple constraints. Here we lay out a perspective on the future of scalable analogical innovation and first steps using crowds and artificial intelligence (AI) to augment creativity that quantitatively demonstrate the promise of the approach, as well as core challenges critical to realizing this vision.
  • 关键词:analogy ; innovation ; crowdsourcing ; AI ; machine learning
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有