首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Partial least squares structural equation modeling-based discrete choice modeling: an illustration in modeling retailer choice
  • 作者:Joseph F. Hair ; Joseph F. Hair ; Christian M. Ringle
  • 期刊名称:Business Research
  • 印刷版ISSN:2198-3402
  • 电子版ISSN:2198-2627
  • 出版年度:2019
  • 期号:In Press
  • 页码:1-28
  • DOI:10.1007/s40685-018-0072-4
  • 语种:English
  • 出版社:Verband der Hochschullehrer für Betriebswirtschaft e.V.
  • 摘要:

    Commonly used discrete choice model analyses (e.g., probit, logit and multinomial logit models) draw on the estimation of importance weights that apply to different attribute levels. But directly estimating the importance weights of the attribute as a whole, rather than of distinct attribute levels, is challenging. This article substantiates the usefulness of partial least squares structural equation modeling (PLS-SEM) for the analysis of stated preference data generated through choice experiments in discrete choice modeling. This ability of PLS-SEM to directly estimate the importance weights for attributes as a whole, rather than for the attribute’s levels, and to compute determinant respondent-specific latent variable scores applicable to attributes, can more effectively model and distinguish between rational (i.e., optimizing) decisions and pragmatic (i.e., heuristic) ones, when parameter estimations for attributes as a whole are crucial to understanding choice decisions.

  • 关键词:Discrete choice modeling ; Experiments ; Structural equation modeling ; Partial least squares ; Path modeling
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有