标题:استفاده از روش ترکیبی انتخاب ویژگی پیدرپی پیشرو شناور و ماشین بردار پشتیبان در پیشبینی درماندگی مالی شرکتهای پذیرفته شده در بورس اوراق بهادار تهران
其他标题:استفاده از روش ترکیبی انتخاب ویژگی پیدرپی پیشرو شناور و ماشین بردار پشتیبان در پیشبینی درماندگی مالی شرکتهای پذیرفته شده در بورس اوراق بهادار تهران
摘要:هدف: پیشبینی درماندگی مالی شرکتها، یکی از مهمترین مسائل تحقیقاتی در حوزه مدیریت ریسک بوده و همواره در کانون توجه بانکها، شرکتها، مدیران و سرمایهگذاران قرار داشته است. هدف اصلی این پژوهش ارائه یک مدل پیشبینی کننده با عملکرد بالا و مقایسه نتایج بهدست آمده از آن با سایر مدلهای رایج در پیشبینی درماندگی مالی است. روش: به همین منظور از روشهای انتخاب ویژگی پیدرپی پیشرو شناور که مدل تعمیمیافته روش انتخاب ویژگی پیشرو پیدرپی بوده و از دسته روشهای پوششدهنده است و روش انتخاب ویژگی پیشرو پیدرپی در ترکیب با ماشین بردار پشتیبان استفاده شد. این مدلها از نوع مدلهای ترکیبی انتخاب ویژگی و طبقهبندی کننده هستند. همچنین در این پژوهش از مدل رگرسیون لجستیک که یکی از مدلهای آماری طبقهبندی است نیز استفاده شده است. یافتهها: پس از بررسی نسبتهای مالی مهم در نهایت 29 نسبت مالی که در تحقیقات گذشته بیشتر استفاده شده بودند، انتخاب گردیند. آزمون مقایسات زوجی نشان میدهد که دقت مدل پیشنهادی این پژوهش با سطح اطمینان 95 درصد بهتر از دیگر مدلهای استفاده شده در این پژوهش میباشد. نتیجهگیری: نتایج نشان داد که مدل پیشنهادی این تحقیق در یک سال، دو سال و سه سال قبل از درماندگی مالی به طور معناداری از عملکرد بهتری در پیشبینی درماندگی مالی نسبت به روش انتخاب ویژگی پیشرو پی درپی و مدل رگرسیون لجستیک برخوردار است.
其他摘要:Objective: Nowadays, financial distress prediction is one of the most important research issues in the field of risk management that has always been interesting to banks, companies, corporations, managers and investors. The main objective of this study is to develop a high performance predictive model and to compare the results with other commonly used models in financial distress prediction Methods: For this purpose, sequential floating forward selection that is considered as the generalized form of sequential forward selection method and as one of the wrapper methods, and sequential forward selection methodin combination with support vector machine were used. These models are combined models of feature selection and classifier. Logistic regression model which is a statistical classification models, has also been used in the present study. Results: After reviewing the important financial ratios, 29 financial ratios that were mostly used in previous researches were chosen. Paired T-test results showed thatwith a 95% confidence level. The proposed model provides higher accuracy than other models used in this study. Conclusion: Results showed that the proposed model of this research has significantly better performance in predicting financial distress than the sequential forward selection method and Logistic regression model in one year, two years and three years before financial distress.