首页    期刊浏览 2025年04月17日 星期四
登录注册

文章基本信息

  • 标题:Bifurcations of a two-dimensional discrete-time predator–prey model
  • 作者:Abdul Qadeer Khan ; Abdul Qadeer Khan
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2019
  • 卷号:2019
  • 期号:1
  • 页码:56
  • DOI:10.1186/s13662-019-1995-6
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We study the local dynamics and bifurcations of a two-dimensional discrete-time predator–prey model in the closed first quadrant R + 2 $\mathbb{R}_{+}^,$ . It is proved that the model has two boundary equilibria: O ( 0 , 0 ) $O(0,0)$ , A ( α 1 − 1 α 1 , 0 ) $A (\frac{\alpha _)-1}{\alpha _)},0 )$ and a unique positive equilibrium B ( 1 α 2 , α 1 α 2 − α 1 − α 2 α 2 ) $B (\frac){\alpha _,},\frac{ \alpha _)\alpha _,-\alpha _)-\alpha _,}{\alpha _,} )$ under some restriction to the parameter. We study the local dynamics along their topological types by imposing the method of linearization. It is proved that a fold bifurcation occurs about the boundary equilibria: O ( 0 , 0 ) $O(0,0)$ , A ( α 1 − 1 α 1 , 0 ) $A (\frac{\alpha _)-1}{\alpha _)},0 )$ and a period-doubling bifurcation in a small neighborhood of the unique positive equilibrium B ( 1 α 2 , α 1 α 2 − α 1 − α 2 α 2 ) $B (\frac){\alpha _,},\frac{\alpha _) \alpha _,-\alpha _)-\alpha _,}{\alpha _,} )$ . It is also proved that the model undergoes a Neimark–Sacker bifurcation in a small neighborhood of the unique positive equilibrium B ( 1 α 2 , α 1 α 2 − α 1 − α 2 α 2 ) $B (\frac){ \alpha _,},\frac{\alpha _)\alpha _,-\alpha _)-\alpha _,}{\alpha _,} )$ and meanwhile a stable invariant closed curve appears. From the viewpoint of biology, the stable closed curve corresponds to the periodic or quasi-periodic oscillations between predator and prey populations. Numerical simulations are presented to verify not only the theoretical results but also to exhibit the complex dynamical behavior such as the period-2, -4, -11, -13, -15 and -22 orbits. Further, we compute the maximum Lyapunov exponents and the fractal dimension numerically to justify the chaotic behaviors of the discrete-time model. Finally, the feedback control method is applied to stabilize chaos existing in the discrete-time model.
  • 关键词:Discrete-time predator–prey model ; Stability and bifurcations ; Center manifold theorem ; Fractal dimension ; Chaos control ; Numerical simulation
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有