期刊名称:International Journal of Intelligent Systems and Applications
印刷版ISSN:2074-904X
电子版ISSN:2074-9058
出版年度:2019
卷号:11
期号:1
页码:55-66
DOI:10.5815/ijisa.2019.01.06
出版社:MECS Publisher
摘要:This paper presents a hybrid learning machine for human identification. It is a merger of eigenface with fisherface method, genetic fuzzy clustering and complex neural network. The non-linear aggregation based summation and radial basis function neural networks (NLA-SRBF NNs) are proposed as one of the functional component of the novel learning machine. The architecture of NLA-SRBF NNs incorporates hidden neurons, with summation and radial basis aggregation, and output neurons with only summation aggregation, along with complex resilient propagation (ČRPROP) learning procedure. The improved learning and speedy convergence of NLA-SRBF NN enables the hybrid machine to provide better recognition accuracy. The learning machine consists of feature extraction, unsupervised clustering and supervised classification module. The aim of our proposal is to enhance the performance of biometric based recognition system. The efficacy and potency of our hybrid learning machine demonstrated on three benchmark biometric datasets-extended Cohn-Kanade, FERET and AR face datasets to comprehend the motivation. The performance comparisons of different variations of hidden neuron and learning algorithm thoroughly presented the superiority of the proposed NN based hybrid learning machine.