首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Grounding Language for Transfer in Deep Reinforcement Learning
  • 本地全文:下载
  • 作者:Karthik Narasimhan ; Regina Barzilay ; Tommi Jaakkola
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2018
  • 卷号:63
  • 页码:849-874
  • DOI:10.1613/jair.1.11263
  • 语种:English
  • 出版社:American Association of Artificial
  • 摘要:In this paper, we explore the utilization of natural language to drive transfer for reinforcement learning (RL). Despite the wide-spread application of deep RL techniques, learning generalized policy representations that work across domains remains a challenging problem. We demonstrate that textual descriptions of environments provide a compact intermediate channel to facilitate effective policy transfer. Specifically, by learning to ground the meaning of text to the dynamics of the environment such as transitions and rewards, an autonomous agent can effectively bootstrap policy learning on a new domain given its description. We employ a model-based RL approach consisting of a differentiable planning module, a model-free component and a factorized state representation to effectively use entity descriptions. Our model outperforms prior work on both transfer and multi-task scenarios in a variety of different environments. For instance, we achieve up to 14% and 11.5% absolute improvement over previously existing models in terms of average and initial rewards, respectively.
  • 其他摘要:In this paper, we explore the utilization of natural language to drive transfer for reinforcement learning (RL). Despite the wide-spread application of deep RL techniques, learning generalized policy representations that work across domains remains a challenging problem. We demonstrate that textual descriptions of environments provide a compact intermediate channel to facilitate effective policy transfer. Specifically, by learning to ground the meaning of text to the dynamics of the environment such as transitions and rewards, an autonomous agent can effectively bootstrap policy learning on a new domain given its description. We employ a model-based RL approach consisting of a differentiable planning module, a model-free component and a factorized state representation to effectively use entity descriptions. Our model outperforms prior work on both transfer and multi-task scenarios in a variety of different environments. For instance, we achieve up to 14% and 11.5% absolute improvement over previously existing models in terms of average and initial rewards, respectively.
国家哲学社会科学文献中心版权所有