首页    期刊浏览 2024年11月09日 星期六
登录注册

文章基本信息

  • 标题:Robust change point detection for linear regression models
  • 本地全文:下载
  • 作者:Alin, Aylin ; Alin, Aylin ; Beyaztas, Ufuk
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2019
  • 卷号:12
  • 期号:2
  • 页码:203-213
  • DOI:10.4310/SII.2019.v12.n2.a2
  • 出版社:International Press
  • 摘要:Linear models incorporating change points are very common in many scientific fields including genetics, medicine, ecology, and finance. Outlying or unusual data points pose another challenge for fitting such models, as outlying data may impact change point detection and estimation. In this paper, we propose a robust approach to estimate the change point/s in a linear regression model in the presence of potential outlying point/s or with non-normal error structure. The statistic that we propose is a partial $F$ statistic based on the weighted likelihood residuals. We examine its asymptotic properties and finite sample properties using both simulated data and in two real data sets..
  • 关键词:bootstrap; Hellinger distance; simple linear regression; robustness; weighted likelihood
国家哲学社会科学文献中心版权所有